
 

Game Design Document

Created by Tyler Hendrickson

Table of Contents
High Concept 3
Game Design 4

Story	 4
Characters	 5
Environment	 7
Weapons	 8
Art	 11
Sound & Music	 12
User Interface	 13

Gameplay 15
Game Controls	 15
Number of Players	 17
Victory Conditions	 18

Software Design 19
Game Objects	 19
Development Process	 21
UML Diagrams	 23

Playtesting 24
Feedback	 24
Changes	 25

�2

High Concept

High Concept
Ambrosia is a first-person wave survival game with an emphasis on cooperative play. Your
group of 1-3 players have crash landed on a planet full of ravenous beasts. Your main
objective is to survive the various waves of enemies while also defending and collecting parts
for the spacecraft. 

�3

Game Design

Game Design

Story
A small group of highly-advanced food people (known as Grubbies) have set off on an
excursion into space to find more materials to bring back to their home planet. Several weeks
into their adventure, however, the spacecraft began to experience problems with the
thrusters. As the power to their thrusters gradually diminished, the Grubbies quickly found
themselves being pulled in by the gravitational force of a nearby, uncharted planet and
inevitably crashing down on the surface.

The Grubbies soon discovered that they were not alone on this planet. Inhabited by this
planet appeared to be a species of ravenous, sickly beasts that would devour anything within
their sense of scent. Realizing the threat these beasts imposed, the Grubbies quickly began
to arm themselves and prepare for the fight ahead.

�4

Game Design

Characters

 Grubbies
The playable characters in Ambrosia are a species of food-like creatures known as Grubbies.
Grubbies are peaceful, docile creatures with an extreme intellect. They are often known to
spend their time exploring the cosmos in search of new resources for their extravagant food
dishes.

Despite their cute and friendly nature, they are not defenseless. Each Grubby utilizes the
latest in culinary tech to blast their enemies into oblivion. While not the most athletic of
creatures, they possess the ability to run, jump, and throw items as far as their noodle-like
arms will allow. Their ability to operate as a unit, each bringing their own set of skills to the
table, has allowed them to triumph over their foes time and time again.

�5

Game Design

The Tasteless
Upon landing on the uncharted planet, the Grubbies discover they are not alone—the planet
is inhabited by a species of beast they affectionately dub “The Tasteless”. The Tasteless
appear to be a species on the brink of extinction as their food supply is nearly non-existent.
Each creature exhibits features of extreme malnutrition as well as razor-sharp claws and
teeth. 

�6

No ears; most of their
sensory perception is

through scent

Visible bones
Sharp teeth and

claws

Game Design

Environment
The Environment in Ambrosia takes place on the home world of The Tasteless. Their planet is
characterized by being extremely barren, rocky, and even volcanic. Despite this, there is a
considerable amount of variety on the map itself. This is to help liven the visual tone a bit as
well as give some spatial reference to the players in the game (one can call out “enemies on
the shoreline” to teammates).

�7

EARLY ENVIRONMENT SKETCH

Game Design

Weapons

Main Weapon

Blender Blaster
In Ambrosia, your primary weapon is the Blender Blaster. This weapon features a high-
powered blender mounted upon a blaster that shoots the pressurized contents at the target.
Rather than having conventional ammo, the source of power for the blaster are the contents
inside the blender. The level of the contents indicate how much “juice” you have left and will
slowly recharge when not in use.

�8

Level indicates amount
of “ammo”

Color changes
with contents

Game Design

Properties
The Blender Blaster’s properties are derived from the contents in the blender. Different
contents will alter the aspects of the weapon (range, strength, regeneration rate, etc.). There
are three different options for the Blender Blaster: 

�9

LEMONADE SMOOTHIE VEGETABLE JUICE

Short-range ammunition.
Very high damage output,

but also depletes very
quickly.

Medium range ammunition.
Strikes a good balance

between damage and rate of
depletion.

Longest range ammunition.
Low damage output, but

doesn’t deplete as quickly.

Game Design

Sub Weapon

Om Nom Bomb
As your sub weapon, the Om Nom Bomb acts like your typical grenade. When thrown, the
Om Nom Bomb will detonate after a certain delay. Upon detonation, each Om Nom Bomb will
perform a different effect (these are detailed below). Each player may only choose one type,
so it’s important to consider how each will benefit your team.

 

�10

GARLIC DIP SPICY SALSA PURE HONEY

Creates a sticky area on the
ground that will slow enemy
movement and temporarily

reduce their attack strength.

Detonates in a fiery
explosion damaging nearby
enemies and leaving a burn

effect that deals damage
over a period of time.

Disrupts the senses of
enemies due to its strong
smell. All enemies will be
drawn to the smell for a

certain duration.

Game Design

Art
The general art style of the game will focus greatly on contrast. The playable Grubbies, their
weapons, and spaceship will all be inspired by food items and be very colorful, cartoony, and
generally friendly looking. The enemies and their planet, however, will be menacing, sickly,
muted in color, and more realistic.  

�11

Game Design

Sound & Music

Sound
Sound effects will be relatively simple by design. These will focus more on giving the player
auditory clues that enrich the gameplay experience.

Examples include:

• Audible “hit” sound to let you know that your weapon has hit an enemy

• Click or grinding sound to indicate no ammo or bombs

• Low grunting or growling sound to alert the player to the location of an enemy

• Crunching sound to let you know when you are taking damage

• Synth sounds when a player returns a ship part

• Explosive sounds for Om Nom Bombs

• Warning alert when spacecraft is under attack

A future version of Ambrosia may also be mixed in 5.1 surround sound. With the proper
equipment/device, this would allow for the player to have full spatial audio to help them locate
things in their surroundings.

Music
The music in Ambrosia is still being decided upon, but it is anticipated that it will likely take
upon an ambient sound rather than a catchy soundtrack. This will help to give the
environment some atmosphere.

Additionally, Ambrosia may make use of layered music tracks so that the soundtrack adapts
to the current game conditions. For example, when the player is in combat, the soundtrack
will become more intense and taper off a bit when they are further from the action.

�12

Game Design

User Interface

Heads-Up Display (HUD)
Ambrosia’s in-game HUD is anticipated to be relatively simple, but give players quick access
to all the info they need.

The major components are:

• Time remaining - Time left until the current wave is over. Displayed in the top left.

• Wave number - The number of wave you are currently fighting. Displayed in the top center.

• Ship parts - The number of ship parts you have returned out of the total required to

advance the wave. Displayed in the top right.

• Player health - The current health of your player. Displayed in a number in the bottom left.

Damage progression will also be displayed using a visual border around the screen.

• Current ammo - The current level of ammunition for your weapon. Displayed using the in-

game blaster model in the bottom right. 

�13

ROUGH MOCKUP OF IN-GAME HUD

Game Design

• Menus
It is anticipated that Ambrosia will have the following different menus:

• Title Screen
• Game Options
• Character Select / Player Lobby
• Main Weapon Select
• Sub Weapon Select
• Difficulty Select
• Main Game (In-Game HUD)

• Pause Screen

• Results Screen
• Results Screen (With Options) 

�14

PROGRESSION BETWEEN DIFFERENT MENUS

Gameplay

Gameplay

Game Controls

Keyboard and Mouse

Look/Aim Mouse/Trackpad Movement

Move WASD or Arrow Keys

Sprint Shift

Shoot Left Mouse

Throw Grenade E

Menu Esc

�15

Gameplay

Controller

To be determined… 

�16

Gameplay

Number of Players

To be determined… 

�17

Gameplay

Victory Conditions

Victory
To successfully complete a wave in Ambrosia there are a few conditions that need to occur:

• At least one player must survive to the end of the current wave

• The number of required ship parts have been deposited in the spacecraft

• The spacecraft has not been destroyed by enemies

Failure
If any of the following conditions are met, the wave (and game) will result in a loss:

• All players have been defeated

• Spacecraft has been destroyed

• Required ship parts were not collected 

�18

Software Design

Software Design

Game Objects

Player
The player game object is the primary one you will deal with. This object and attached
functionality will deal primarily with your movement, jumping, aiming, shooting, throwing
bombs, and collecting items.

Scripts
• Player

• PlayerController

Enemy
The enemy game object is another one you will deal with the most. This object and attached
functionality will deal with determining closest location to attack, attacking objects, and basic
map traversal.

Scripts
• Enemy

• EnemyController

Ship
The spacecraft is a stationary game object. This object deals primarily with collecting ship
parts from the player. It also has health attributes and can be attacked by enemies

Scripts
• Ship

• ShipController

Collectable
The collectables are just what they sound like. Their main functionality is allowing the player to
pick them up and disappearing when that occurs. They also will do a check to see if the
player is already holding a collectable

Scripts
• Collectable

�19

Software Design

Bullet
The bullet is a game object that is created as the player holds down the fire button. Multiples
of these are spawned and each is able to determine whether it hits and enemy and does
damage.

Scripts
• Bullet

Bomb
Like the bullet, the bomb is a game object that is spawned as the player inputs the command
to throw it. After a delay, it detonates and hurts the enemies within range. It does not explode
upon impact.

Scripts
• Bomb

�20

Software Design

Development Process

Overview
The development of Ambrosia occurred over the space of one semester and was broken
down into four milestones. Despite working alone on this project, various tools were used to
organize the process and to keep track of version history. Various development activities
continued after the semester ended to further refine and polish the game for showcasing
within a portfolio.

Tools
Perhaps the most important organizational tool used during the development process was the
use of Trello. Trello allowed me to track all of the user stories and operate in an Agile-like
manner.

In addition to this, both Bitbucket and Unity’s built-in collaboration function were used for
version control (redundancy is good, right?). This gave me the option to roll back changes if
something were to go awry.

User Stories

Milestone 1
Milestone 1 was a sort of “test” in getting a player to move around in an environment. Basic
elements were added to make it a game where tasks were required to win.

Milestone 2
Milestone 2 was the first basis of an actual game. User stories included:

• Creating a GameManager to manage the state of the game.

• Creating attributes for enemies, and player.

• Implementing enemies with basic AI behavior using a Nav Mesh Agent.

• Implemented shooting mechanic.

• Finalized 1st person view.

Milestone 3
The highlight of this milestone was implementing the wave mechanic. Other additions focused
on adding lingering features from Milestone 2 and improving the environment. User stories
include:

• Player is now only able to thrown one Om Nom Bomb at a time with a cool down between
uses. This prevents the spamming of the bombs which would make the game too easy.

�21

Software Design

• Various missing reference errors were fixed regarding objects that had been destroyed
(checking for null before accessing).

• Blender Blaster has a charge that discharges when firing and recharges when not in use.

• Spacecraft is now able to be damaged and destroyed by enemies, resulting in a loss.

• Enemies will stop moving when in range of a target.

• Multiple ammo types were created for the Blender Blaster in code. Inaccessible for now.

• Health counter was transitioned to a visual border to represent damage. This keeps the

players focus on the action.

• Various code refinements and optimizations.

• Finished creating basic environment details.

• Implemented wave mechanic. Three waves of enemies spawn and there is a transitionary

period between each wave.

• When the ship is under attack by enemies, a message is displayed to alert the player.

• Separated UI behavior from the GameManager.

• Implemented a UI bar to indicate the ship’s current health.

• Designed HUD element to show the cool down of the Om Nom Bomb.

Milestone 4
This milestone was concerned with wrapping up all missing features and functionality and
further adding polish to the game. User stories from this milestone are as follows:

• Implemented a HUD bar element indicating current level of ammo.

• Implemented ability to drown and included a status message explaining what happened if

this does occur.

• Added invisible boundaries around the game world to prevent players from falling off the

level.

• Instead of ship parts scattering the map, a spawning mechanic was introduced to spawn a

ship part randomly on the map at specific intervals. More ship parts will spawn than are
actually needed to advance the wave.

• Added much more detail to the model for the Blender Blaster.

• Fleshed out the environment with various rock formations.

• Completed rigging and animating the enemy models. Enemies will now walk when moving

and change to an attacking animation when attacking the player or the ship. 

�22

Software Design

UML Diagrams

Abstract UML Diagram  

�23

GameManager

MainWeapon SubWeapon

Bullet Bomb

Collectable

PlayerController

Player Enemy

EnemyController

Ship

ShipController

Playtesting

Playtesting

Feedback
Playtesting was performed based on a build from Milestone 2. Despite it being relatively
simple at this point, a good amount of feedback was positive. However, there were multiple
sentiments echoed across playtesters.

Playtesters commonly mentioned the following things:

• The game is too hard

• The map is too large and not interesting

• Couldn’t tell when an enemy was attacking the ship

• No way to tell what the ships health is

• Hard to pick up ship parts (collider too small)

• Throwing bombs didn’t seem to work

• Shooting randomly cut out

• Models are basic and lacking animations

• No sound effects or music

While most of these were things I was aware of, there were a few that I wasn’t anticipating.
For example, the collider being too small on the ship parts was something that I hadn’t even
thought of. I was able to address most of these in Milestone 3, but there are a few more that
will require some extra time.

�24

Playtesting

Changes

Difficulty
Because multiple playtesters mentioned that the game was too difficult, multiple changes
were made to the game more accessible. These will be further refined as more feedback is
given.

Health Indicator
Because the health number in the previous build of Ambrosia was often hard for playtesters to
see, health was transitioned to be represented by a frame around the screen instead. As you
take more damage, the frame becomes darker and more apparent. This is similar to other
shooter games and lets you keep your focus on the action. 

�25

ENEMY ATTACK 20 15

SHIP HEALTH 500 1000

SECONDS PER WAVE 60 90

SPAWN DELAY 10 15

PARTS REQUIRED 3 2

Playtesting

Environment
Another common complaint was that the environment was too basic. Playtesters described
the world as “monotone” and “lacking in variety”. As such, the environment was completely
overhauled with a greater variety of assets and terrain. Additionally, the map size was greatly
reduced. 

�26

Playtesting

Bomb Recharge
In the build of the game provided to playtesters, you could only throw one Om Nom Bomb at
a time and had to wait certain amount of time before you could throw another. This confused
playtesters as there was no indication of how long you had to wait or when another bomb
was available to be thrown. Some playtesters even thought that the bombs weren’t working.

Due to this, a radial recharging indicator was added in the bottom left corner to show when
you could throw a bomb again and what Om Nom Bomb you have equipped.  

�27

Playtesting

Ship Health and Alert
Playtesters explained that it was hard for them to tell when the ship was being attacked when
they were out collecting ship parts or not looking at it. Additionally, it was impossible to see
the current health of the ship, so it would often be destroyed to the surprise of the playtester.

In response, two features were included:

• A health bar above the ship showing the current health of the ship. This bar will orient itself

to the player no matter which way they are facing.

• An alert message that displays whenever an enemy is attacking the ship.

�28

	High Concept
	Game Design
	Story
	Characters
	Environment
	Weapons
	Art
	Sound & Music
	User Interface
	Gameplay
	Game Controls
	Number of Players
	Victory Conditions
	Software Design
	Game Objects
	Development Process
	UML Diagrams
	Playtesting
	Feedback
	Changes

